Inequalities for weighted entire functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for Entire Functions of Exponential Type

This paper is concerned with a class of linear operators acting in the space of the trigonometric polynomials and preserving the inequalities of the form \S(8)\ < \T(8)\ in the half plane Im 8 > 0. Some inequalities for entire functions of exponential type and some theorems concerning the distribution of the zeros of the trigonometric polynomials, including an analogue to the Gauss-Lucas theore...

متن کامل

Weighted Multidimensional Inequalities for Monotone Functions

Let + := {(x1, . . . , xN ) ; xi 0, i = 1, 2, . . . , N} and + := + . Assume that f : + → + is monotone which means that it is monotone with respect to each variable. We denote f ↓, when f is decreasing (= nonincreasing) and f ↑ when f is increasing (= nondecreasing). Throughout this paper ω, u, v are positive measurable functions defined on + , N 1. A function P on [0,∞) is called a modular fu...

متن کامل

Inequalities for products of zeros of polynomials and entire functions

Estimates for products of the zeros of polynomials and entire functions are derived. By these estimates, new upper bounds for the counting function are suggested. In appropriate situations we improve the Jensen inequality for the counting functions and the Mignotte inequality for products of the zeros of polynomials. Mathematics subject classification (2010): 26C10, 30C15, 30D20.

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1966

ISSN: 0040-8735

DOI: 10.2748/tmj/1178243417