Inequalities for weighted entire functions
نویسندگان
چکیده
منابع مشابه
Weighted Markov–bernstein Inequalities for Entire Functions of Exponential Type
We prove weighted Markov–Bernstein inequalities of the form
متن کاملInequalities for Entire Functions of Exponential Type
This paper is concerned with a class of linear operators acting in the space of the trigonometric polynomials and preserving the inequalities of the form \S(8)\ < \T(8)\ in the half plane Im 8 > 0. Some inequalities for entire functions of exponential type and some theorems concerning the distribution of the zeros of the trigonometric polynomials, including an analogue to the Gauss-Lucas theore...
متن کاملWeighted Multidimensional Inequalities for Monotone Functions
Let + := {(x1, . . . , xN ) ; xi 0, i = 1, 2, . . . , N} and + := + . Assume that f : + → + is monotone which means that it is monotone with respect to each variable. We denote f ↓, when f is decreasing (= nonincreasing) and f ↑ when f is increasing (= nondecreasing). Throughout this paper ω, u, v are positive measurable functions defined on + , N 1. A function P on [0,∞) is called a modular fu...
متن کاملInequalities for products of zeros of polynomials and entire functions
Estimates for products of the zeros of polynomials and entire functions are derived. By these estimates, new upper bounds for the counting function are suggested. In appropriate situations we improve the Jensen inequality for the counting functions and the Mignotte inequality for products of the zeros of polynomials. Mathematics subject classification (2010): 26C10, 30C15, 30D20.
متن کاملSufficient Inequalities for Univalent Functions
In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1966
ISSN: 0040-8735
DOI: 10.2748/tmj/1178243417